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1, InMe'Mction 

'l1da paper treats a certain clua ot linear programs, the correapondi:r.?, 

graphical interpretation, L~d wi ll br i ng ~ogether the graphical and 

tbe alaebiraic approach, 1'be first problem is t he network flo\1 problc:tr .. 

Tbe grapd.cal approach and l abeling p~edure are due to For d and 

1\l.lkeraon (7), 'ale earlier l inear progruming approa·: h we.s gi ven by 

Dultzig [2], 

In linear Prosr-11'18 the concept of a ba&ic solu~ion t a l ir. .e.r 

ayaU. ot equations and 1 eq alities is :t\l nde.men al since i f .... re i•' 

an optJJD&l solution to a l i Dear program, t her, t here is a.r. op ~mal 

baaic solation. A bas i s ot a. matri x A is a matrix B consistl~ o f' 

a Mxlm&l set. of linearly i ndependent columns of h 1 a:1d a b&Gl -

solution to the linear system Ax • b , 0 ~ x ~ 0 , is a. s olut-ion 

0 0 
x for vhich there is a basis h of A aueb tt>.at x. • 0 or 

'-' 

x~ • Oj unles s AJ is a col\&1 o.f B , 

T'ne ~ of a -trtx A 1a def! ed to e the m!Ll'J..rr.wn numbe!" 

l i ne&rly independeDt col.~ ot A • I~ i s a we.L-kcown resW..t of 

linear algebra t hat tbe nak 1a also e<iU&l. to t~1.e ma.xlmu.-n r.wn~r 

lineq 1naepende0lt I"'OIM, aa4 tha~ for e er · se t. f i lnea:·l y 

independent columna of A With tever coli.Uil.IlS t he.:1 t he : L"lk of A 

ot her col~ of A can be lldde4 to the set vr.ile preserving the 

property of linear l ndepe!'ldenee until the set i;.aa a.s ma:1y colur.ms as 

the rank ot A • ~Ll!-'S 1 s. matrix B or ir.A!~pendent CClUIU'lS of A s 



a basis of A if, and only if, B has as many columns as the rank of 

A , or equivalently if, and only if, every column of A can be written 

as a linear combination of the columns of B , 

A square m x m matrix is defined to be singular if its rank 

is less than m and is non-singular if its rank is equal to m . 

Another well-known result from linear algebra is that a system of 

equations with a square, non-singular coefficient matrix has a unique 

solution, 

2.  Concepts from Graph Theory 

Definitions: 

Graph, Vertices, Edges; A graph G is a finite set V of vertices 

v, ,...,v  and a finite set E of pairs of vertices, e ■ (v,,v ) , 
1    m k    i j 

called edges.  The edge e = (v,,v.) is said to be incident to the 
k    i J 

vertices v,, and v. . 
i      J 

Network, Undirected Graph, Arcs; The edges can be ordered pairs or 

unordered pairs, and the edge is correspondingly called directed 

or undirected.  A directed graph, or network, is a graph with all of 

the edges directed. In a network the edges are called arcs, although 

the term edge still includes both the directed and undirected case. 

Examples of directed graphs are transportation networks and communication 

networks.  In a transportation network the vertices are junctions, and 

the arcs are connections, such as roads and air routes, between junctions. 

An undirected connection, for example a two-way street, can be replaced 

by two directed edges. 

Subgraph, Spanning Subgraph; A subgraph H of G is a graph whose 

vertex set V and edge set E are subsets of V and E , respectively. 



A spanning eubgraph H of G ia a subgraph wioh the same vertex 

set as G . 

Path, Simple Path, Cycle; A path in a graph G is a sequence of 

vertices and edges, (v , e . v  e ,...,v  , e  , v ), such that 
Li.dc. n-i  n-i  n 

e  is Incident to both v. and v  , The vertices v , v 
i i      i+1 1' n 

are called the ends of the path P , and the path is from v  tc 

v . A simple path is a path with distinct vertices. A cycle is a 
n 

simple path together with an edge from the beginning to the end of the 

path. 

Connected, Component: A connected graph is a graph with at least one 

path between every pair of vertices, and a graph which is not connected 

clearly consists of connected components. 

Tree, End, Forest, Spanning Forest: A tree is a connected graph 

with no cycles, and an end of a tree is a vertex touching only one 

edge of the tree. A forest is a graph consisting of one or more 

unconnected trees. A spanning tree of a graph G is a tree which is  a 

spanning subgraph of G , and a spanning forest of G is a forest 

which is a spanning subgraph of G . 

Note that all of the definitions from path to spanning forest do not 

depend on whether any edges are directed or undirected. 

Lemma 1 If there is a path from v  to v , then there is a simple 

path from v  to v . 

Proof:  Let v^, e , ^o'"' ''^'-l'  ^ Vk be a path fr0m Vl t0 Vk * 

Let v  be the first vertex which is repeated, so that v ,...,v    are 

distinct and do not appear again in the path.  Then suppose v, is the ias'c 

listing of vertex v.  in the path. Omit the segment c , v  ,...,e. 

from the path to form a new path  vi> ei > vp >• • • > v- » e• i ' 



j+1 k 

A -^.VIT. -f   'he ic-vr  ..•.;cLu': l ■*..M  —.   - 1
K- p-^.'.h -.7 rv.eated,  even^vaLly 

path w.j.i  result. 

Lemma 2     The follcwlng is an inductive characterlzaticn of trees;    a 

tree 1= either a tir^,:.-  vertex cr 1= two dlsjcint treea   Joined ty & 

single edge incident to cne vertex cf one tree and one vertex of the 

other tree. 

Proof.        Clearly,   * graph ^ ^n^tr^oted in eu^h a way is a tree,     rr» 

harder part cf the ir'.'f is to show that every tree satisfies the 

condition.    If a tree    T    has no edge, then It is a single vertex. 

If    T   has an edge,  say    e,   « (v , v ) , then there is no simple path 

between   v     and   vCi    net using    e     because if there were,      T   would 

contain a cycle.    Hence,  by Lemma 1 there is no path from   v.    tc    v0 

not using   e    .    So if    e      is removed from   T , the retailing graph 

has at least two conre-.ted componente    I1     and    T     with    v     in    T\ 
■i. _ x ^ 

and v0 in T^ . Froir. every vertex v in T there ire sirtle paths 

to v. and v ; therefore, there is a simple path to v  t,c v 

not containing    *,   .     Renc.-5,  reaov.^l cf    e,     causes the remaimr^r graph 

to have exactly twe  connected ccsmponer.ts    T.     ai:d    T    .    They are 

trees because if either had a cycle,  ^c would    T . 

Lenma 3      Every tree ha* at le^st ere end,  and if it has ar. edge,  then 

it has at least twe  ends, 

IVoof:        The proof is most easily dcxe using lemma 2,    Lenmst 5 is 

tru.e for a single vertex.    Suppose it is true for two trees.    Then aiding 

an edge incident tc one vertex of each tree will always leavs one end 

in each tree.    Hence the new tree will, have at least two ends, ar,d the 

lemma is proven. 
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Lemma h-     A tree with m vertices has m-1 edges. 

Proof:   The proof is immediate using lemma 2 and Induction as in the 

proof of lemma 5. 

Lemma 5  Every connected graph G contains a spanning tree T . 

Proof:   Define a subgraph T having the same vertex set as G and 

edge set chosen as follows. Initially, choose any edge of G to be 

in T . Thereafter, chcc?e any edge of G that does not produce 

a cycle in T . When every edge in 0 ■• I produces a cycle if added 

to T , then T is easily seen to be a spanning tree of G . 

3.  The Linear Programming Probleiri 

For a network G , the vertex-arc incidence matrix is defined by 

P if arc e . is not incident to vertex v 
J i 

a, . ^ < 1       if arc e a (v , v) for some v € V 

I -1       if arc e » (v, v ) for some v € V , 

The linear programming problem is: 

minimize z subject to     Ax + Us «■ b , C <^ x ^ a , 0 <^ s <^ CJ , 

ex + cs =■ z 

where A is an m x n vertex-arc incidence matrix of a network G , 

and U is an m x n matrix such that each column of U has one non- 

zero entry which is a +1 or a -1 .  If a column of U has a +1 

in row i , denote the variable by s, , and if a column of U has a 

-1 in row i , denote the variable by s. . Let a   be denoted 

correspondingly a. or a.  , and denote the corresponding cost c by 

ci or Ci * Tlle Si anci s^    sxe  CQiled slack variables or slacks. 

If a variable x,  was pertnltted to be negative, then it could be 
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replaced by two variables, Its positive and negative parts, and an axe 

would be adjoined to G in the reverse direction of e. . If a variable 

x.  had a lower bound ß > 0 and e » (v , v ) , then b  could 

be replaced by b. - ß , b  replaced by b + ß , a  replaced by 

O. - ß , and the lower bound replaced by 0 , Nothing is assumed 

about b. being positive, negative, or zero. Hence, 0 ^ x <^a , 

a > 0 , is completely general and includes lover bounds and 

unrestriced variables. Symbolically , a, =« + » means :io upper bound 

is placed on x . 

Similarly, 0<£B<^a,a>0 is perfectly general, A slack 

must have an upper or lower bound in order to mean anything, A bound 

can be adjusted to zero as above, and then a negative slack B. 

can be replaced by a non-negative s. , and visa versa. Note that only 

one of s. , s  could be present at a given vertex v. , No upper 

bound on a slack is symbolically represented by o. « + « . 

th 
The   k  column, of A corresponds to arc e,  of the network, 

and a column of U with non-zero entry in row i corresponds to vertex 

v. . The variable x.  can be thought of as a flow in arc e , 

the variable s. can be thought of as exogenous flow out of vertex 

VJ , and s. can be thought of as flow into vertex v. . The constraints, 

then, require that the net flow in vertex v. be b . 

0 
Let A  denote the matrix [A, U] , For a matrix B of columns 

0 
of A , let FB be the subgraph of G consisting of the vertices 

corresponding to columns of U and edges corresponding to columns 

of A together with vertices incident to such edges. 

r 
B 

Theorem 1    If B is a basis of A , then F^ is a spanning forest 



of G . 

Proof:   If F« is not a spanning subgraph of G , then some vertex 
B 

of G , say vertex v, , is not in F . Then, every entry in row 1 of 

0 
B is a zero.  But some column of A  has a non-zero entry in row 1, 

and such a column cannot be written as a linear combination of columns 

of B t  contradicting B being a basis. 

The remainder of the proof consist of showing that F« has no 

cycles. Suppose F3 has a cycle ^ , e1 , v2,...,vk , ek , vk+1 - ^ , 

Then there are k column- of B , say a,,.,, IT , corresponding to 

e^,,,«,ek , 

r1 
Let   y. " 1 " eJ " (VJ' v' 

k 
For v. not in the cycle , 2 b. .y ■ 0 because none of the arcs 

el',,,,ek ftre inciden't t0 v4 B0 a11 bn " 0 for J ■ l|...,k . 

For v. in the cycle, there are four cases to consider: 

(II) e1 - (v^ v^^ , ei+1 . (v^ v1+1) 

(III) e1 - (Vj^.v^ , e1+1 - (v1+1, v^ 

(iv)  e1 - (v^ v^^ , ei+1 - (v1+1, v^ , 

For case 
r i  J-i 

(1), b., - i and b., - 0 for Jj^i or i+1 , 
1J   L -1   >i+l      1J 

k 
and y. ■ 1, y.  ■ 1 so  2 b y •■ 0 , The other three cases are 

similar, and in all of them Z y .B^ ■ o contradicting B 
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having linearly independent columns. Hence,the theorem is proven. 

The above proof can be thought of as picking a direction around 

the cycle and sending a flow of 1 around in that direction, A flow 

of -1 can be thought of as reversing the direction of the arc and 

then sending a flow of +1, 

A vertex v. corresponding to a column of U in B , a basis 

0 
of A , will be cabled a root of the tree in F^, . 

0 
Theorem 2    For B a basis of A , every trae of the forest FB 

has at most one root. 

Proof:   Suppose some tree had two roots v1 and v , A tree is 

connected so there is a simple path from v. to v  in the tree, 

say v, , «■, , v0,,,,,v ■,}  \ p \'    Hence, there are k+1 columns 

of B , say B ,,..,Er+ , corresponding to e1, e ,,,.,6^, v^,  v^, 

respectively. Let 

C   -1    if 3'   has a -1 non-zero entry 

k+1 * I k+1 

* "■   ^ +1    if B " has a +1 non-zero entry, 

k+£ 
f  +1    if B   has a +1 non-zero entry 

^k+2 "1 k+2 ^      -1 if   B has a    -1    non-zero entry, 

'J 

k+2  . 
Then, as in theorem 1,  2 y.B a o , contradicting linear independence 

of the columns of B, Hence, the theorem is true. 

The construction above, as before, can be thought of as sending 

a unit of flow into v. and out of vk , 
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A tree vlth one roct Is called a rooted tree, and a forest with 

each tree haarig ore roct is celled a rooted forest, 

A non-singular,  triangular matrix is a square matrix with non-zeros 

on the main diagonal and all zeros below the main diagonal,  or which can 

be brought to such a form by swapping rows and swapping columns.    An 

equivalent,  inductive characterization is the following:    a square 

matrix    B   is non-singular, trian/rolar if there is e row of    B   with only 

one non-zero entry and if the   r^crix    3    fo-Tied from    B    by deleting 

that row and the cclunm containing the non-zero entry la also non-singular, 

triangular.    The abo/e characterization is complete if a   1x1    non-zero 

matrix is understood to be non-singular and triangular, 

Theorem 3 If    F_    is a rooted,  spanning forest of   G ,  then    B   is 
■ B 

a non-singular,  triangular matrix. 

Proof:        Such a matrix    B   will be square by lemma If, which says a 

tree has one less edge than vertex,    fhe additional column of   U 

for each tree makes    B   have as many columns as rows. 

The proof is by induction on   m ,  the number of rows of    A    ,    For 

mal,    B   is a    1x1    non-zero matrix which is non-singular and 

triangular.    Assume the theorem is true for    1,...,    or m-1    rows 

0 0 
in    A     for some    m ^ 2 .    Consider a matrix    A     having    m    rows. 

If    B   has only columns from   U ,  then    B   is diagonal so 

certainly non-singular and triangular.     If    B   has a column from   A , 

then   F_    has an edge,   and the tre£  to which the edge belongs has 

at least two ends by ierana 3,    Bit the tree has only one root,  and 

hence,  there must be a vertex    v.    which is an end of the tree and not 

a root.    Then,  row    i    of   3   has only one non-zero entry.    Let    B 
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be the matrix fomtd fror.   3   by deleting row   i    and the column 

-0     ,-  -s, 
with non-zero ent,ry ir rov/ i . Let A = LA , UJ denote the matrix 

Ü 
formed I'rora A  by deleting row i and all columns with non-zero 

entries in row i , and let Ü denote the network formed from G 

by deleting vertex v., and all arcs incident to vertex v t Then 

A is the vertex-arc incidence matrix of G , and F— is a spanning 

forest of G . Fuircherraorft, every -cree of Pr- 1-ias exactly one 

vertex car responding to U i:: B . Hence, by the induction hypothesis, 

B is non-jlngular and triangular. ■7:iere:.''ore, B is non-singular 

and triangular, completing the proof. 

Q 
Theorem k Let A  be such that every cormected component of the 

network G has at least one vertex corresponding to a column of U . 

B Then a matrix B of coluions of k     is a basis if, and only if, FT 

is a rooted, spanning forest of G . 

Proof:   By Lemma S, each coanecLed component cf G contains a 

0 
spanning tree. Let B consist of the columns of A  corresponding 

to all the edges in the spanning trees of the connected components 

of G together ^icb r.ne coiiunr. froa   U for each connected component 

of G . Then by thecrcii ;,, B is non-singular and triangular.  Hence, 

0 
the rank of A  is rr . 

0 
Suppose a matrix B of jolvmns of A  has such a corresponding 

graph F . Then by theorem 5, E is non-singular and triangular. 

Hence, the coluans of 3 ore linearly independent, and B is square 

0 
so has rc rows and m columns. Tnerefcre,  3 is a basis of A . 

0 
Suppose that E is a basis of A , From theorems 1 and 2, the 

proof will be completed if it can be shown that every tree in the forest 
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F  hac at least one root. Suppose a tree has no root. Then,  B 
B 

has m-1 columns or less because a tree has one fewer edge than 

vertices, and no tree in F can hav more than one root.  But the rank 

0 0 
of A  is m so B could not be a basis of A .  Hence, the theorem 

is proven. 

Lemma 6    If    B    is a    m x ra    non-singular,  triangular matrix of    0 , 

I's ,  and    -1's   ,  and if   b    is a    m x 1     column vector of integers, 

then the solution to    Bx rr b    has    x.     integer for    j=l,..,,m . 

Proof:        The usual  iterative method of solving a triangular system of 

equations is to solve for one variable,   substitute its value in its 

place and move to the right hand side.     Then the smaller matrix    B 

will be triangular with   0,1,-1    entries, and at each step the 

variable determined will be an integer.     The proof is completed. 

Lemma 6 can be used to show that if    b , a , and ,  a    are 

integers,  then every basic solution will  be integer.     Hence,   if there is 

an optimal solution,  any basic optimal  solution will be all integers. 

This property can also be proven frr.m the algorithm in section h but has 

been indicated here tc complete the discussion of the properties of 

0 
the matrix    B    when    E    is a basis of    A 

h.      The Simplex Method for Network Flows 

In this section,   the simplex method for solution of the network 

flow problem will  be presented along with an example.     The algebraic 

details of the simplex algorithm with upper bounds and the use of Riase I 

and Phase II in solving linear programs are readily available     [2] and 

will not be reviewed here.    However,   a descriptive outline will  be given 
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as a structure on whjch the later algorithms will be built.    The 

simplex algorithm begins with a feasible basis and nonbasic variables 

at upper or lower bounds. 

Simplex algorithm 

Step 1:       Determine values of the dual variables. 

Step 2:      Price out the variables and select a profitable variable for 

entry into the basis.     If there is no profitable variable,  then the 

present solution is optimal. 

Step 3:       Determine the changes in value of the basic variables when the 

new variable is introduced into the basis with the largest change 

consistent with feasibility.     If there Is no limit to the change in 

the new variable, then the objective function is unbounded.    Otherwise, 

go to step h. 

Step k:      If the increase in the new variable is stopped by its reaching 

its upper or lower bound, then it remains nonbasic at its upper or 

lower bound, sind the algorithm returns to step 2„  Otherwise, enter 

the new variable into the basis and drop from the basis one of the 

previously basic variables which prevented further change of the 

entering variable. Def.. ne a blocking variable to be a basic variable 

which becomes infeasible if the entering variable is changed any more. 

Thus, a blocking variable is dropped from the basis. 

This description does not handle the problem of degeneracy, which will 

be discussed later,, 

The procedure to be given works directly with the forest Fn in 
is 

G to carry out these four steps.  The concepts introduced here will be 

used through the remainder of this paper although the 



n 
details of carrying out the four steps will differ for different 

problems. 

Let    (v, . e., vr....,v    .,  e    ., v )    be a simple path in a 

network.     If an arc    e.  = (v , v      ) , then   e      is called a forvard 

arc in the path,  and if    e.   =  (v      ,  v^) ,  then    z^    is called a 

reverse arc  in the path.   Ir. a rooted tree there is a unique simple 

path from the root to each vertex.    An ecLg* will either be a forward 

arc or a reverse arc in a.'.l sue/.1 paths, and forvard BXZ will be called 

an up arc with respect to "he  tr3o?  and a reverse arc will be called 

a down arc with respect tc the tree.    Thus,  in a rooted forest each 

arc can be designate! as an up arc  or a down arc. 

Several operations in a routed forest will be described for later 

use in the changing of basis in step h.    These operations will not 

depend on whether the edges are directed or undirected.     To reroot 

a tree means to designate another vertex as its root and drop the 

old root.    To cut off the top of a rooted tree at an edge    e , means 

to delete the edge    e    fror, the tree.    Then part of the tree becomes 

a seperate  tree which has no root and is called the top of the tree. 

Either one of its vertices can be  designated as the root,  or it can be 

grafted onto a rooted tree by adjoining an edge from it to a rooted 

tret . 

Network Linear Programming Algorithm 

Step 1;      For a rooted,   spanning forest    F     of    G ,  the dual variable 

TJ-      at a root    v      is given by r c if    s.     is basic 

^-c., if    s.     is basic    , 
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If    TT,     is determined,   then for an up arc    e,   =  (v. .   v.)   . r.    is 
i ^ k i       j    '    j 

given by    TT.  = -c,   + TT    ,  and for a down arc    e,    »  (v   ,  v  )  , TT      is 
J K        1 ^ J      1 J 

civen by    TT .  = c,   + TT,   .     All of the   TT     are uniquely determined 
^•'jki i 

iteratively because of a rooted tree being connected and having no 

cycles. 

Step 2:       To price out and select a new variable for possible entry into 

the basis,  search for an arc    e.    or a vertex    v      such that one of 
* 1 

the following holds: 

(a) s    » 0 and "^i > c
i          ' 

(b) s' - a" and 7^ > -c"        ; 

(c) sT = 0 and TT   <  -c"        ; 

(d) s]-a] and TT^C*         ; 

(e) e^ (v^  v.) ,    xi -0 , and   ^ - ^ > ^      J 

(f) e^-tv.,  v^ ,     *e .Qx,ar.dWj   - ^ <  ^      . 

If none of  (a)-(f) is found,   then the solution is optimal.    Otherwise, 

go to step 5 with such a variable. 

Step 3:       The feasibility conditions here are    0<^x<£a,0<^s<^a. 

In cases  (a) and  (b) of step 2, let    v      be the root of the tree 

containing    v    , and let    P =  (v e  ,v      . .,v      ,e       ,   v  )    be the 

path in    Fn    from     vn     to    v    . 

In cases  (c) and  (d), let    v      be the root of the tree containing 

v    ,  and let    P= (v.,  e.,  v.     ,...,v,  e      ,   v   )    be the path in 
J J      J       J+l *-i      i/-l      r 

F,.    from    v      to    v    . 
B j r 

In cases  (e; and  (f),  suppose that    v      and    v.    are in different 

trees of    F    .     Then,  let    v      be the root of the tree containing    v. 
r> 1 1 

and    v      be the root of the tree containing    v    .     Suppose that the 
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path from ^ to vi is (v^ e^, V2>"'*Vi~l'  e±-lJ  Vi^ and the 

path from v^ to vr is (v  e v<+1>*"*vo.i> ejl_1>  vr) • lAt 

P » (v^ V v2,..., v^^ «^^ v^ e^ Vj, ej, vj+1,...,vr-1, Vi, vr). 

For all of the above cases, Increase x.  hy Ö if e  is a 

forvavd arc In P and decrease x.  by 9 if e,  is a reverse arc 

in P , For the first vertex v  in P , increase s" by Q    or 

+     + 
decrease s  or y  by 9 , whichever is basic or entering there.  For 

the last vertex v  in P , decrease y" or s  by Ö or increase 
r ' r r 

s.     by    Ö , whichever is basic or entering there.     Set    6    at the 

largest value consistent with feasibility a-nd go to step k.     If there 

is no bound on how large    Ö    can be,  then the problem has an unbounded 

objective function. 

In cases  (e) and (f),  suppose that    v1    and    v     are in the same 

tree of   FB .    Let    P =« (v.,  e     v.    ,.,.,v      ,  e      , v^)    be the path in 

F„    from   vj    to    v    .     Increase   x     by   e    if    e      is a forward arc 
B j i k k 

in    P    and decrease    x,     by    Q   if   e      is a reverse arc in    P ,    In 

case  (e), increase   x,    by    ö .    In case (f),  decrease    x.    by   9 . 

As before, set    9    at the largest value consistent with feasibility 

and go to step k. 

Step k:      If the increase in    6   was stopped by the new variable reaching 

its upper or lower bound,  then it remains nonbasic,and the algorithm 

returns to step 2.    Otherwise,  the new variable enters the basis,  and 

a blocking variable is dropped.    We will consider the corresponding 

arcs or roots as entering    F^    and dropping from    F- .    There are five 

cases to consider.    The reference is to Example 1, which follows. 
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(a) A root enters, and a root drops. Then the tree is rerooted, 

(Exanple 1, (l)). 

(b) A root enters, and an arc drops. The arc dropping cuts off the 

top of the tree, and the root enters on the top of the tree. 

(Example 1,(4)) 

(c) An arc enters from one tree to another, and a root drops. The 

tree from which the root dropped is grafted onto the other xree 

by adjoining the entering arc, (Example 1, (2), (5), (6), (8)). 

(d) An arc enters from one tree to another, and an arc drops. The 

arc dropping cuts off the top of one tree. The top is then 

grafted onto the other tree by adjoining the entering arc. 

(Example 1, (5)). 

(e) An arc enters with both vertices in the same tree. Then, 

necessarily, an arc drops. The tree is not changed except for 

addition of one arc and deletion of another arc. (Example 1,(7)), 

Sxarrple 1    Suppose warehouses 1 and 2 have supplies of 10 and 6 

box car loads of thread. Storage capacities are 7 box cars at each 

warehouse, and storage costs sire ^2 per box car per week for warehouse 

1 ar.d ^Sl per box car per week for warehouse 2, Suppose mills 5,4, and 

5 will need 0,1, and 8 box car loads of thread in the coming week. 

The mills have no excess storage space and must meet these demands by 

shipment from warehouses 1 and 2. The train lines, available space, 

and costs are shown below in algebiic form. The corresponding 

graphical form illustrating the routes is shown. The slacks s. and 

G~ are indicated by arrows out of and into v , respectively. All of 

the lower bounds are 0 , 
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h    \   X5 \   X5 x6 X7 X8 
+ 

81 

+ 
82 

1 

1 

1 

1 

1 

1 

10 

6 

-1 -1 1 -1 1 0 

-1 -1 -1 1 

-1 

1 

-1 

-1 

-8 

7 5 6 5 2 3 5 6 2 1 costs 

5 5 8 8 9 9 5 6 7 7 capacj capacities or upper bounds 

The simplex method starts with phase I,In which all of the cost 

axe 0 except for artificial variables. The entering variables will 

be Indicated by dotted lines, and the variables dropping from the 

basis will be Indicated by X . The symbol I }♦ Indicates a 

variable at upper bound, but the arc Is not drawn so that the tree 

structure of the basis will be clear. The values of the basic 

variables are Indicated by numbers next to the arrows and dual 

variables by numbers next to the vertices. Each Iteration below 

Includes the 5 steps of the simplex algorithm except that the new 

values of the basic variables are not shown until the next diagram. 

Two Iterations are done In (l) and (2), but should not cause con- 

fusion because they are on different components of F . 
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TT-, ■ 1 > 0 so s  can 

enter basis but reaches 

its upper bound first. 

Similarly, s2 can enter 

and the artificial at 

v2    drops. 

(2) 

 >  

The new basic and dual 

values are shown,    s,     is 

upper bounded at    7 • 

7r2 - TT^ - +1 > 0    and 

x    = 0 . and   TT, - TT,. = 

2 > 0    and 
*? 

0    so 

x.  and x  enter. Two 

artificials drop. 

(:■) 

IT    - 7T    = +2 > 0    and    x s 

0    so    x..     enters,and the 

artificial at    v     drops. 
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7L = -1 < 0 and 8 = 

0=7 so 81 enters 

the basis, and x. drops at 

its upper bound. Note 

v  could have been chosen 

to drop as well. 

TT, - 77 » +1 > 0 and 

x, = 0 so x.s    enters the 

basis, and x2 drops at 

upper bound. 

TT. - TT « +1 > 0 and 

k     Xn = 0 so Xo enters the 

basis,and the artificial 

at v,- drops out. 

END OF PHASE I 
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The dual variables are 

now calculated using costs 

ck * ^ " ^3 ' +6 > 5 

and x = 0 so x 

enters, and x^ drops. 

7T,   - TT, ^ 6 < 7    and 
x        5 

x1 = ßj^    so    x1 

ajid    sj   drops. 

enters, 

-2 

Pricirig out now reveals 

that an optimum solution 

has been reached. 
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For phase I, let us denote the dual variables by p  instead 

of 71^ and I«* d4 » -(pi - p ) when ek =» (v^^, v.) , ^ a -Pj^ , and 

d7 a p. . Theorem k  says the matrix B is a basis of A  if,and only 

If F-, is a rooted^ spanning forest of G , provided that G has a 

vertex corresponding to a column of U for each connected component 

of G . Phase I starts viT.li artificials; which are the same as slack? 

singled out to be minim:.zed, at all of the vertl JS of G SO G does 

have a vertex with slack in each connected component. The simplex 

method goes from basis to basis, and the rank of every basis is the 

same provided we go from phase I to phase II by fixing the values of 

and eliminating from further consideration those variables at zero with 

d > 0 and those variables at upper bounds with d < 0 , Theorems 1 

and 2 assure that F^ will always be a spanning forest of G with at 
B 

0 
most one root on eacr. tree for B a basis of A .  If some tree 

did not have a root, then the basis would have lower rank than the 

original basis contradicting the above statement which always holds 

for the simplex method.  Hence, the assumption that every connected 

component of G has a vertex with a slack is justified because it 

always holds in the computational procedure, 

A labeling procedure can easily be devised to assist ii carrying 

out the computation as described. However, an efficient labeling 

procedure for this algorithm must be able to go up the tree as well 

as down the tree. Some promising work along these lines has been done 

by Scions [1C] and others. 

The algorithm given does not resolve the degeneracy problem. 
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That is, in step U if several variables are blocking vaiiables, 

how do we decide which one to drop? In exanple 1, this qaestlcn arises 

in iteration {h).     In practice, the algorithm is almost alwa^t finite 

without any special procedure for resolving degeneracy. The next 

section treats degeneracy in a better ./ay tnan can usually be done, 

^   Phase I 

Phase I of the network flow problem is called the nax-Ilow pj-obleru. 

Roughlyjthis name originates by considering the artificials as being a def- 

icit flow, and the problem being to maximize flow or iairlmi:e uhis deficit. 

To begin, sec the variables x , s at zerc. Let y. « b, 

if b. > 0 and y' = -b  if b < 0 . Tne costs d are 0 for 

all variables except artificials and d = d, = l for artificials 

y  and y, . The dual variables ai'e denoted by p . The ar-ificia'i.s 

eu:e actually slacks which are aistinguiiched by liavirig d ■- 1 . 

Steps 1, 2, and 5 of the simplex algcrlchm offer some ob.r:lous 

simplifications for this max-flow problem. Step h  can be modified 

to resolve the degenerecy problem in a much better way tha.i is 

generally available for a linear program and even better t'ian is 

available for the network flow problem. One of the nodificat.ion-, i?. 

-t- +    .        . 
the use of slacks s, = ü which have a. equau. to zero^ ou , were 

not originally present in '.he problem so have  a. equal to Lv;ro« T-'scse 

slacks eu:e dummy slacks added to give a root to a tree, but ihey i.vus'; 

remain zero because no slack is permitted there. Once they become 

nonbasic, they are dropped. To begin, If b = 0 , let a slack be 

basic at v.  if there is a slack there.  If not, adjoin a slack 
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8. with o. « 0  . The rooted, spanning forest F  consists now of 
i       1 B 

trees consisting of one vertex which is the root of the tree. 

Max-Flow Algorithm 

Step 1;  All of the p  are +1, 0, or -1 depending on whether 

the tree containing v. has a root v  with y f  a  slack, or 

y- . Hence, detenrJLning the dual variables p. Is sinrply a natter of 

detsrniir.tng the root of the tree containing ths vertex v. and is no 

longer an arithmetic operation. 

Step 2;  Let, V, =» [ v1 | pi « +1), Vo » (vi | pi a 0), and V - 

(v, j P tM -1],    Then, pricing out and selecting a new variable is 

reduced to searching for one of the following: 

(a) v. € V , and s a o cr s" ■» a" ; 

(b) v, € V , and s^ « at or s" « o ; 

(c) ^ "  (v^ Vj) x^ . 0 , atd vi e V^ Vj € Vj , or 

vi € V^ v, € V£ , or 

Vl e  V2' V) € V5 ; 

(d) ii - {wy  v1) , xi » a^ , and ^ « \ , Vj E V; , or 

Vl € Vl ' VJ € V2 ' 0r 

vl c V2 ' VJ € V5 • 

Hence, pricing out as well as determining the dual variables, is not 

an arithmetic process, but is only a search. Note that cases (a) and 

(b) of step 2 In the network linear programming algorithm have now 

been collapsed into case (a) and cases (c) and (d) there into case (b). 

If none of (a)-(d) is found, then the solution is optimal. Otherwise, 

go to step 5 with such a variable. 



Step 3;  Step 5 is the same as for the network linear progrataciinff 

algorithm except that an entering «ire will never have both vertices 

In the same tree because an entering arc always lias vertices in 

different V . Hence, the flow will change by amount 0 ai.ong a 

path P from y  to y" f  or from yT to a slack^ ov from a 

slack to y7 . Since y ^0 is now part of the feasibility condition^, 

there is always a bound on how large 0 can bo set without /lolating 

feasibility. The path P is called a flow segmenting path because 

the change in flow results in a decrease in the artificials a^, i.he 

end of P . 

Step 4 (l);   Step k{i)  is the sazce a? step k of the netwerk linear 

programming algorithm except that case (e) there never occurs here, 

and here we specify In certain cases which of the blocking variable..« 

to drop. 

If an artificial y  ox y  reaches zero in stop >, thfto, chejige 

it to a alack s = 0 with  a| = 0. 

If P has two slacks at its t.ids,then any blocking varia.VL'? 

can be dropped.  If P has one slack and one artificial, «her* c'.-op 

the blocking va^'lable nearest in P to the artificiel..  if t   JI-J,ö 

an artificial at each end and only one variable is a blocking variable, 

then drop it. Otherwise, there are at least two blocking variables 

corresponding to arcs In P . Jrop the blocking arc nearest one end 

of P and the blocking arc nearest the other end of P . 0.? e. 

vertex v. of P between these t';o arcs, put a slack s a 0 vitli 

0. ■ 0 , Now, there are three rooted trees where there ucre fc rooleö 

trees before. 
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Step 4(ll);   If in step ^(i},a tree with an artificial y. at 

the root v  had another tree or top of a tree grafted onto it, then 

begin at the edge adjoined in the grafting and trace the tree away 

from the root along every branch until either an end of the tree is 

reached, or an up-arc e a (v. , v ) at upper bound is reached, or 

a down-arc e ™ (v^, v ) at lover bound is reached. If either of the 

two types of arcs e is found, jut off a top of the  tree by deleting 

e from F_ and ztake v  a root of the top with slack at zero and 
B 2 

upper bound of zero. 

Repeat for artificials y~ except look for up-arcs at lower 

bound and down-arcs at upper bounds. 

Return to step 1. 

Proof of finlteness of the algorithm;    The observation in step 5 

r. 
J 

that the flow augmenting path P is from v. with y  to v.. 

with y  , or from y. to a &lack, or from a slack to y  is 

important because it shows that the flow change along P in step 3 

is always away from y. and toward y" . But step k{li)  assures 

that at any iteration there can always be a positive flow change away 

from the root of a tree with root y. and toward the root of a tree 

with root y~ .  If any iteration does not result in a change in flow, 

then the blocking varlP-hle canrot be the entering arc or an arc in 

the tree with an artificial so the tree with an artificial grows by 

at least the entering arc. Hence, the number of elements in V  decreases 

at each iteration which does not result in a change in flow. But, 

there are only  m vertices in all so there can be at most m iterations 
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in a row resulting in no change in flow. 

If   a ,  a ,  and    b    are integer,   then each change in flow results 

in an integer decrease in the sun of the artificial variables.    If the 

original sum of the artificials is    M , then the algorithm cannot take more 

than   m M   iterations because the artificials are non-negative. 

Even with fractional and irrational   a ,  a , and b ,  finite 

convergence of the algorithm can be prcven.    The variables in the 

forest    F^    are determined once all the other variables are determined. 

But the other variables can take on only two values,  their upper and 

lower bounds.     Hence,  a given forest can only take on a finite number 

of values and,  hence,  can only recur a finite number of times.    There 

are a finite number of rooted,  spanning forests so the algorithm is 

finite. 

The reason the Ford-Fulkerson labeling procedure for the max-flow 

problem may not be finite  (page 21 f    j   ) when   a , a ,  and b    are 

irrational is that the variables strictly between their upper and lower 

bounds may not form a forest;   thac is,   they may form cycles.    This 

difficulty can be overcome with!a the framework of that procedure 

by forming the set    E.     of arcs between their upper and lower bounds. 

After each breakthrough,  the labeling procedure is done first in    E 

and then using arcs not in    3      but checking all of the arcs in    E 

each time a new verte:: is labeled and unscaimed.    Then,   the arcs 

between their bounds never form a cycle.    For a network with one 

source,  one sink,  and no slacks,  the labeling procedure with this 

modification is a way of accomplishing the above algorithm except that 
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the trees in VA w-e riot kep': t.rack of. The labelling procedure 

destroys all the labels a'.'ter a change in flow. Whether a more efficient 

labeling procedure can ce devised to modify labels with change in 

flow is yet tc be seen. 

The Ford-Pulkerson procedure converts a general network flow 

problem zo  a problem with o::e source, one sink, aid no slacks. This 

cor.versiOE was not dor:^ here LnccAiae the purpose is to develop the 

network flow theory vitliv». t>'e frajmework of linear progreutming in 

order to show the connection. Adjoining the additional source, sink, 

and slack verttx rcakes sense graphically, but not algebraically, and the 

graphical, procedure without adjoining additional vertices is closer to 

the linear programmirig procedure, I;ote aJ.irj that, jjositive lower bounds 

are bandied easily because no esfrumption is made on b . 

In summary, the «j-d/antsges of the max »flow algorithm o/er the 

network linear progrsaaJ.'^; algorithm c^s simplicity in detarrlning 

dual variables and pricing oat, and th.* fact that at nest m iterations 

in sequence can occor with no chtnge ir.  flow. T-'V.s fact is a result 

of having nu arcs erit^r with both ende In the ssune tree because when 

that happens the flow cban-ge is toward the root in some arcs and away from 

the root ir; others. The flow clv.nge is always away from a root v. 

with y.  and toward a root v      with y" . The trees attached to 

roots with artificials are constructed so that such a flow change is 

possible. 

6.  Tie Primal-Dus.l Method for Network Fl ^w.s 

The primal-dual avethod w.s devised [6] for the network flow 

problem, and then it was generalised to the general linear program 



28 

[;')]•     Its advantage over the simplex method depends on some simplification 

for the restricted phase I problem.    For network flows, its advantages 

over the networy linear programming algorithm are the same as the 

advantages of the max-flow algorithm Just given. 

For a network programming problem, define 

p<lV  if e^Cv^v.) and V0 

(1) dual feasibility conditions:    ^ - ^ <     > if e    , (v   v ) and x- 
—     K K w "■ 

a. 

TT^ 

^ ci  ,  if    Si = 0 

1 ci >  U   Si - ^ 

1 -ci  ,  if s" - 0 

^ -c" , if s" - c^ 

The primal-dual method starts with a   TT , x , and    s    satisfying the 

dual feasibility conditions and    O^x^a, 0<^s^a, but not 

Ax + U8=b.    If   c > 0 .  then     TT .  » 0   all    i    and   x   = s^  = sT = 0 
^  '       1 k   i   j 

is such a TT , x , and s . ^ c
k * ci or Ci is neSative» set the 

corresponding variable at upper bound. If there is no upper bound, 

then set an upper bound M and let the variable be equal to M . 

If at the conclusion the variable is still equal to M , then raise 

the upper bound M , introduce new artificials, and solve again. 

Starting with a TT , x , pud s satisfying (l) , and 0 <^ x ^ a , 

0 ^ s ^ a , the primal-dual method uses the max-flow algorithm 

restricted to arcs e. " (v., v ) and slacks s  and s„    such that 
k    i  J hü 

TT. - TT. =» c. . TT, a c, , and TT. a ~c~.  . At the conclusion of the 
i   J   k '  h   h '       £ i 
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max-flow subroutine, the TT'S are changed to TT. + €, v c V , 

and TT. - € > v^ e v, > where e is chosen as large as possible without 

violating the dual-feaslblllty conditions (l). Note that e > 0 , 

The max-flow subroutine Is the primal step, and the dual change 

Is the dual step. The two alternate until either no artificials 

remain in the primal step or until there Is no bound on how large c 

can be chosen in the dual step. If there ere no remaining artificials, 

then the solution  TT , x , s is optimal.  If there is no bound on 

G , then there is no solution to Ax + Us=b,0<^x<^a,O^E^a. 
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7.  Flows with Gains 

A network with gains Is defined to be a network G together with 

a function w on E , the edges of G , to the reals. Then, w(e) 

Is the gain associated with the edge e .  Assume w(e) ^ 0 . 

. 1        if arc e, » (v , v) for some v e V 
I k    l 

Define a., ■ i w(e, )      if arc e, ■ (v. v.) for some v e V 
Ik   (.   k k      1 

0        otherwise 

The linear program In a network with gains or flows with gains [8] 

problem is: 

Ax + Us = b       »O^x^a    ,  0<.s^a, 

(2) 
ex + cs a z(mln) 

If w(e ) » -1 for all arcs e, , the problem is the same as In 

sections 1-6.  If w(ek) > 0 and the graph Is bipartite, Dantzig [2] 

has called the problem the weighted distribution problem and given the 

structure of the basis.  Here the basis is slightly more complex than in 

sections 1 through 6.  First, a preliminary lemma is needed. 

Lemma 7  A connected graph G with k vertices and k edges has 

one cycle, and if the edges of the cycle are removed, then the 

remaining graph is a forest with each tree having exactly one vertex in 

the graph. 

Proof:   The graph G must have at least one cycle since, otherwise, 

G would be a tree, and a tree with k vertices has k-1 edges by lemma k. 
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Suppose G has two cycles.  Then, ".here is an edge of  G in 

one cycle but not in the other. The removal of  that edge from 

G does not destroy connectedness and leaves one cycle in G . 

Then, G has k vertices and k-1 edges so is a tree by lemma 4; 

but a tree has no cycles so a contradiction is reached. 

If all of the edges of the cycle are removed, then the remainder 

of the graph is a forest because it has no cycles. Each tree of the 

forest must include a vertex of the cycle because the original graph 

G was connected.  Suppose there were two vertices of the cycle in 

some tree of the remaining forest. Then, there is a path in the tree 

between the two vertices and a path in the cycle between the two 

vertices. Together, they form a cycle.  Hence, the original graph 

G would have had two cycles contradicting the previous part of the 

lemma. Thus, the lemma is proven. 

Let A - [A, U] . 

0 
Theorem 5    Let A  have rank m ,  The connected components of 

the graph IL corresponding tc a basis  B ol A  is either a rooted 

tree, or a graph with the same number of vertices and edges and having 

no slack. 

Proof:   A proof similar to the proof of theorem 2 shows that H 
B 

can have at most one slack corresponding to a connected component. 

The ;5ame idea as before of sending one unit of flow from one 

slack to the other along a simple path is still aplicable, but the 

algebraic details are more complicated and are omitted here. 

If a connected component of Kp on k vertices has k+1 or 

more corresponding columns of B , then those k+1 or more columns 
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have only   k   rows with non-zero entries, contradicting independence 

of the columns of   B . 

Therefore, if a connected component of    H-   with   k    vertices 

has one slack, then it cannot have more than   k - 1   edges.    It must 

have    k - 1   edges to be connected.    Hence,  the component is a rooted 

tree.    If a connected component of   IL   with   k    vertices has no slack, 

then it cannot have more than   k   edges.    But   A     and , hence,    B 

have rank   m , so each connected component must have as many corresponding 

columns of   B   as vertices.    Hence,  a connected component with   k    vertices 

and no slack must have    k    edges, and the proof is completed. 

In sections ^-6 the htxsie was always triangular, and the entries were 

+1    and    -1 .    Here,  even when the basis is triangular, the entries are 

not    +1 and    -1    but are    1    and   w(ek) .     The changes in steps    1-3 

of the network programming algorithm given in section 1*., 

due to the   gains      w(e, )    will be discussed first under the 

assumption that the graph    IL   has no cycles;  that is,    H     is a rooted 

forest. 

Step 1;      At the root, 7^    Is still equal to    c^    or    -c' .    If   7^ 

is known and   e^ * (v^ v )    is an up-arc, then   TT. - ^rr*)  (ck ' ^ > 

If   TT.    is known and.    e    = (v., v )    is a down-arc, then   TT    = 
i k j      1 J 

ck - w(ek)7r1 . 

Step 2;  Pricing out is the same for the slacks, but for the arcs it 

changes to: 

(e) e^ «  (v1, Vj) , x£ =» 0 , and 7^ - w(e^) TTj > c^ ; 

(f) ei » (vj, v^ , xi - ^ , and TTj - w(ei ) ^ < c£ . 
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Step J>:     This step is BIJUI'^SX  to step 5 of the network prograaming 

algorithm except for two differences. 

Previously, the flow clmnge was +© or -© in all of the arcs 

of P . Now, suppose P = (v^ e^, v2.'.-,
e
k_1* 

v
k, 

e
k, 

v
k+1, 

e
k+1''*^ 

v  , e ., v ) , and x  changes by d ,  If e  is a forward 
r-1  r-i  r '      k k 

arc in P , then x     changes by - -r  \  d if ^ T  
is a forward 

k-l ^k-'l 
arc in P and by -& if e. ,  is a reverse arc in P ; and x, , 

k-l k+1 

changes by    ••w(e1 )&    if    -,   i    i^ a forward axe in   ?   and by 
wie ) K 

-      r        \ Q    if    e,   ,     is a reverse arc in    P ,    If   e,     is a reverse w\.e      ) kfl K v k+1 
ajrc in    P ,  then the change in   x is the same as the change in 

x, above,  and the change in   x is the same as the change  in    x, 
K+1 Kfl k-l 

above.    The charige in sicak at    v      is either    + 9    or    ± w(e  )0 

if    x,     changes by    9    and similarly for    v    , 

The second difference occurs when an entering arc has both vertices 

in the same tree.    Then a flow change  can take place not only around 

a cycle, but down the path from the cycle to the root.     If the variable 

dropping is on the path instead of the cycle, then the cycle becomes 

part of the basis. 

A cycle corresponds   to a matrix of the form: 

where    +    indicates a non-zero entry. 

For any right-hand side,  a system of equations with such a coefficienJ 

matrix can be solved by considering the first variable to be a 
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parameter, moving it to the right hand side, and solving -ehe remaining 

system, which is triangular. 

If the cycles are thought of as being a single vertex,  then the 

connected component becomes a rooted tree with the cycle being the 

root.    In step 1,   computing the dual variables, the    TT.    around 

the cycle can be solved first, and in step 5, computing the change 

in flow,  the flow change around the cycle can be computed last as 

a separate subroutine as indicated above.    Step 4, the change in basis, 

is similar to the network programming algorithm except that whenever 

a slack enters or drops there,  a cycle could enter or drop here in the 

sense that an arc enters forming a cycle or em arc drops destroying a 

cycle.    The cycles can form when an arc enters with both ends in the 

same tree as mentioned in step 5 above. 

Phase I for this problem does simplify somewhat.    The tree    without 

artificials, including the trees with cycles, all have dual variables 

p    «s 0   at every vertex   v    .    The only computation of dual variables 

is on trees with an artificial, but,there, actual computation must be 

done.    Pricing out does not simplify,  but every entering arc will have 

at least one end in a tree with an artificial variable at the root. 

Hence, any change of flow involving a cycle will be along a path 

with the cycle at one end and an artificial variable at the other end. 

However,  the handling of degeneracy in the max-flow algorithm in net 

ion:; 1-6    can not be done for this problem.    For the max-flow algorithm, 

the flow change was always away from an artificial    y.    and toward em 

artificial    y" •    That this important property no longer holds is 

illustrated by the example below. 



Example 1 The network 1B Illustrated below,  and the algebraic 

statement cf the problem gives the edge weights. 
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*! 
X2 x? 

+ 
yl 

+ 
y2 

1 1 1 1 = 1 

2 
1 

1 1 = 1 

3 -2 -10 » 0 

0 0 Ü 1 1 

No upper bounds are placed. 

s      is added but restricted to remain 0. 

TTU - 10 TT   =» 1 > 0 so    x      becomes 
2 5 3 

basic, and   y_    drops  . 
5 

(2) 
^x 

10 

^ 

"1 
1 i ! v o x TT^ = 1 -    r > 0    so   X, 2 "2 2 1 

enters, and    y      drops 
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^l " ^5 * 2 " 5" > 0 so x3 

enters, and x. drops 

(4) 

1 
2 

Optimal 

Iteration (3) Illustrates a case when the change In flow In arc 

(v0 , v ) is toward the basic artificial    y    . 

Hie two advantages of the raax-flow algorithm do not carry over to 

the phase I problem here, except that the dual variables on a tree 

without artificial variables are zero,  and the cycles only enter into 

a basis change at one end of a path.    The primal-dual method can be 

used here, but lacks any special advantage since the phase I problem 
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does not significantly siirplify.    However, there Is a sj^ciai case of 

the flows with gains problen in which tlie Phase I problem simplifies as 

much as it did in the previous cheptei.    The next  section discusses 

that problem. 

8.      Linear Programming In &r. undirected Graph 

Suppose in the flows with gains probleir,  all of the gelm, 

w(e. ) ~ +1 .     Then th« matrix    A    '.s a vertyx-^dge incidence matrix 

of an undirected graph    J .    Tb«   .lolucx.s :f    A   correspond tc ^lgs3 

and have two    4-1    entri^d .lri-lic'a.tlng the two incident vertices.    The edges 

are undirected and vill b:- wii^t^n    e    -- [v    ^  v.j    to disting^aish them 
K 1 J 

from directed edges or arc?.    The order :f    v.,  v.    has no importance; 
i  ,] 

there is at most on« edge between v      and v „  and [v., v ] represents 
l      J        j-  J 

the same edge as [v.,  v ] . 

If any b < 0 , then thera must be a s  because, otherwise, there 

t.h 
would be no feasible solution to Ax + Ub :- b . Hence, the i— row 

n ^ n 
of Ax + Us a b is  2 s, x, - sj -J b   aM c" s" = -=7b + 2 (c'a,, )x . 

^1 \ K   ^   i '     i i     1 i k^l i Sc J 

Therefors    c       car. bi replaced by zer:  and    :;      by    c    + c    a If 
i k k        i    i 

n k 

c' ^   oo        then    2 d    x   > t      holds  f-.-r all feasible    x    and, hence, 

th ^    K 

the i— row of    Ax + Uö - b    can just be dropped from the systea.     If 
n 

o   <   «o  ,  then adding    c      to both sides of      2ax,-Snb     gives 
i 1 k^L    IK        i       i 

n - K 

2   a   x   + (cr^   - s ) n b    + a    .    Now,    a   - s   > G    so if    b   + a   < 0 , 
kni i^^-^J-J-i a       i ii 

then there ii« no feasible solutior.     If   b.  +    CT   ^ C  ,  replace   b 

by    b.   + C*  ,  replace    $.     by    s    =    cj - s" ^ C ,  ajid set    a   = b    + o'  . 

Wierefore,  only the caee    b ^ C    need be considered here.    All of the 

artificial variables will be    y.     eo we drop the    +    and just write    y    . 



!)ef1De tbe lenath .;)! a cycle to be th.e Dl.lmber of ed6ee in it. 

~ 8 It B 111 a buis of A 
0 

, the~ t~ cycles 1D ~ are of 

o44 leDgth. 

Jlltoof: 

Let xJ • l for J even and xJ s -l tor J odd. 

a 
tor all i becauae tor 1 ~2' J~a1JxJ • ai,i-lx!-1 + ai1x1 • xi-1 +xi • 

a 
o, aD4 tor 1 •1, z ai .. x ... ~~ + ~ axa n -l + l. 0. Bence, 

J~ ~ ~ , . 

a buia coul4 DOt 1ncl.u4e an even cycle beciW8e the colU111118 correepoDdina 

to u even cycle are lin~,. .. " 4ependent. 

U G baa nt.\ o4cl cycl.es, then every buia bas no cycle so ~ 

1a a rooted toreat. A gr&pb G with no oM cycles is called 

ld.J&I'Ute aD4 1s eaa!J.y pl"'ven to have the property that t.:he vertices 

cube divided into t.vc d1sJ.:;1nt sets v1 , v
2 

such that every edge 

1a 1DCid.ent to one vertex ot v1 an4 one of v2 • '!'he rovs or A
0 

correspoad1~ to vertices of v
2 

can be 11Ultip:&.1ed by -1 con·.rertiDa 

0 
A into the :aetvork tlov type -.tr1x .. ._. eect.!Qn is, 

therefore, Ja1Jlly concerned vith graphs G bavi.Dg odd cy:l'!s. 

Bach odd cycle in tbe basis v1ll be considered to be a 81Jl8le vertex 

ao t!at tbe resul t1DI sre.p!1 1' B con-eaponding tJ.> B ia a l'OOted 

forest. 

Por a rooted tree, define the distance ~ the root to a vertex 

to be tbe maber ot edges in tbe pa1;h frca the 1"'0t to tbe vertex. 
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For example, the distance froa the root to Itself Is zero. Define 

the distance from the root to an edge to be the number of edges in 

the path from the root to the vertex of the edge nearest the root. 

For example, an edge incident to the root is distance zero from the 

root. The edges and vertices are called even or odd according as the 

distance from the root is even or odd. 

An algorithm similar to the max-flow algorithm vlLl be given for 

Phase I of this problem. To begin, set the variables x , c at 

zero. Just as in the max-flow algorithm, let y. = b  if b > 0, 

and if b. a 0 let a slack be basic at v. if there is a slack there. 

If not,set s. = 0 and  a = 0 , 

For a tree with root v. and y  basic, the even edges are 

called Increasing edges, and the odd edges are decreasing edges. 

Increasing and decreasing edges are only defined in trees with an 

artificial at the root. 

Alternating Path Algorithm! 

Step 1;  The dual variables p. are zero on trees without an artificial. 

On a tree with root v., and artificial y. , p. = +1 for v. an even 

vertex and p « -1 for v. an odd vertex. 
J J 

Step 2;      Let   ^ = ^ | p1 = +1), V2 «{^ | pi « 0}, and   V   = ^ | p    « -1). 

Pricing out and selecting a new variable amounts to searching for one of the 

following:      (a)   vi G V     and    s. = 0   or    s.  «   cr       ; 

(b) v. e V_    and   B. « a.    or   s.  ■ 0       ; 
0        5 *       T- 1 

(c) e^ » [V-L  ,  v^  ,    x^    - 0,  an^ ^ €  ^ , v   G vi    or 

vi e  V1 ,  vj G  V2    ; 

..,    (d)    Ct = [vi  '  VJ]  ' Xi 3 ^ ^  and Vi e  W V5    0r 

V
l e  V3 '  Vj'€  V2       ' 
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The v , v  are not in any order so which of  v^^ v- ^ ln ^  an^ 

which Is in V, or V  does not matter. 

Step 3:  The feasibility conditions are O^x^a, O^s^a , O^y. 

In case (a) of step 2,  let v  be the root of the tree containing 

v . Since v c V , v  has an artificial variable because all of 

the trees with artificial variables have all cf their vertices in V,, . 

Let P = (v , e , v2'*,,'vi_i' e^»i* Vi^ be the path in FT3 from v
1 

to v. • 
i 

In case (b) of step 2,  the tree containing v. has a root v 
J * 

with an artificial just as in case (a). Let P = (v., e., v      v 
J      j      j+1 r-1 

e      ,  e )    be the path in   F„   from   v     to    v    . 
r-1      r B j r 

In cases  (c) and  (d)^  suppose    v.    and    v.    are in the same tree 

of    Fp .    Then    v      and    v.    are both in    V      or both in    V      so 

the root    v     has an artificial.    Let the path in   F^   from   v      to    v. 
1 B       1      j 

be (v;L, ei, 
y
ul>'">vjml*  e^1>  vj)- Forra the cyclQ    &!>  e^  vi+i'--- 

-j.!' ej.l' VJ' ei) ^ let P= (vr ei' V-'Vl' er-l'  V 
be the path F  from v  to the cycle, where v  is a vertex uf the r    B       1        "      * r 

cycle. 

In cases  (c) and  (d)  ,  suppose    v      and    v.    are in different 

trees of   F_ .    Let    v.     be the root for the tree containing    v 
B 1 1 

and    v      be the root of the tree containing    v.   ,    Suppose the path in 

FB    from   ^    to    ^    is     (v^ e^  v2,...,vi_i,  e^, v^j    and from 

v.    to    v     is    (v.,  e      v.     ....,/      ,  e    ^,  v  ).    Let    F =■■ 
j r J      j'    j+1 r-1      r-1'    r 

('v,e,v,.,.,b      ,e      , v , e,, v , e ,  v      ,.,,,v      ,e      ,v), 
^ 1'    1'    2'      ' i-l'    i-1'    1'    £'    j'    j'     j+1'      ' r-l'    r-l'    r' 

One end of   P   could be a cycle,  but at least one end of    P   must be 

an artificial.    In case  (c), designate    c.    to be an increasing edge. 
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and in case (d) designate    e«    to be a decreasing edge.    If only one 

end of   P   has an artificial, then starting at    e*   and going toward the 

end of   P   without artificial, designate the edges alternately as 

increasing and decreasing edges. 

Suppose an end of    P   is a cycle.    Then that end edge in    P    is 

incident to a vertex    v,     of that cycle.     Denote the cycle    (v ,   e ,   v ,.,., 

v        , e        ,  v )  .     Designate    e      as an increasing edge if the edge 
tiK+l        cK+-L        1 1 

in P incident to the cycle is decreasing, and e  is a decreasing 

edge if the edge in P is increasing. Going around the cycle, alternately 

designate the edges as increasing or decreasir/';. The edge e    is 

designated the st ae PI.    e-, because the cycle is of odd length. 

Q 
Increase    x.     by   ~   if   e      is an Increasing edge in a cycle 

Q 
and decrease    x.     by    -   if   e     is a decreasing edge in a cycle. 

Increase    x,     by    6    if    e      is an increasing edge of    P   and decrease 

v      by   9   if   e      is a decreasing edge of    P .    Decrease artificials 

at the end of    P    by    0 .     If a slack    s.     is basic at the end of    P , 

then increase or decrease    s      by    9    according as the edge in    P 

incident to the end of    P    is decreasing or increasing.     If a slack 

s      is basic at the end of    P ,  then increase or decrease    s      by 

0    according as the edge in    P   incident to the end of    P    is increasing 

or decreasing.    Decrease    y.    by    0    if    v.     is an end of    P .     Set 

Ö    as large as possible,  consistant with feasibility. 

Step k{i): The types of basis change have been discussed in section 

1. 

If an artificial reaches zero in step 5,  then replace it by a slack 

with zero upper bound. 

If   P   now has artificials at neither end,   any blocking variable 



can be dropped.  If P has exactly one artificial, then drop tne 

blocking variable nearest in P to the artificial. If no edge of P 

is blocking,and the other end of P has a vertex-cluster, then drop 

any blocking edge of the vertex-cluster. If P has an artificial 

at each end and only one blocking variable, then drop it. Otherwise, 

there are at least two blocking arcs in P . Drop the blocking arc 

nearest one end of P and drop the blocking arc nearest the ether end 

of P . On a vertex v. of P between these two arcs, put a slack 

s. « 0 and  0. =» 0 , Now there are three rooted trees where there 

were only two rooted trees. 

Step 4(ii):   If in step 4(i) a tree with artificial at the root had 

another tree or a top of a tree grafted onto it, then begin at the edge 

adjoined in the grafting and trace the tree away from the root 

along every branch until an increasing edge at upper bound or a decreasing 

edge at lower bound is reached.  Cut off a top of the tree by deleting 

the edge from F^ and put a root on the top with slack at zero and upper 

bound of zero. 

Return to step 1. 

The algorithm is completed. Now its correctness and finiteness will 

be proven. 

Lemma 9  The increasing and decreasing edges alternate along P . 

Proof:   The edges in a tree with artificial alternate between increasing 

and decreasing along any path in the tree because the distance from 

an edge to the root alternates between even and odd numbers. Hence, in 

step 2, cases (a) and (b), the lemma is certainly true. In cases (c 

and (d), if one end of P is not an artificial, then the edges of P 
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from   e.    to that end alternate because the edges were designated 

increasing and decreasing alternately beginning at    c. .     In case  (c), 

e^    is increasing, and in case (d) ,  c.    is decreasing.    The proof 

of the lemma will be completed if it is shown that in case  (c) the edge 

e   in   P   next to    e-    and toward a root with artificial is increasing. 

A vertex of    e-    toward a root with artificial is in    V      in case 
Ju i- 

(c) and is in    V     in case  (d).    Hence,  in case  (c) the vertex of   e 
5 

furthest from the root is in    V.     and in case (d) it is in    V    . 
i 3 

But in a tree with artificial at the root, . i increasing edge is em 

even edge so its vertex furthest from the root is an odd vertex and, 

hence,in V , and a decreasing edge is em odd edge so its --ertex 

furthest from the root is an even vertex and, hence, in V . Therefore, 

in case (c) the edge e is decreasing ^and in case (d) it is increasing. 
n 

Lemma jLQ The changes of variables in step 5 does not change  2 a^ ixi 
J*l 1J J 

in a cycle or in P except at the ends of P where the changes are 

compensated by cheuiges in slacks or eirtificials. 

Proof:   Lemma k proves the lemma in P except at the ends of P . 

For an end of P with a cycle, the chemge in the variable corresponding 

to the end edge of P is compensated for by the change in the variables 

corresponding to two edges of the cycle incident to the end edge, 
n 

The change in 2 a.i ^ for other vertices v  of the cycle is zero 
"    .3=0. 1J J i 

by the alternating nature of the edges. 

For an end of P with slack, the change in slack was defined so as 

to compensate for the change in the variable corresponding to the end 

edge. 
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For an end of    P   with   y    , the end edge is Increasing so    y 

decreases. 

Lemma 11 In step 2, except for case (c) when v € V , v e V  and ____ 1   i   J   2 

case (d) when v* € V, > V1 € Vo ' the resul'tin8 change in step 3 

causes the sum of the artificials to strictly decrease. 

Proof:   Step h(il)  assures that Increasing edges are less than their 

upper bounds and decreasing edges are greater them their lower bounds 

in trees with artificials at the roots. Hence, cases (a) and (b) of 

step 2 always r^-jult in a decrease in the artificial at the root. Cases 

(c) and (d) for which v. and v  are both in V  or both in V , 
1 j 1 5 

but in different trees of    F- ,  always result in a decrease in both 

artificials.    The remaining consideration is cases  (c) and (d) when 

v,     and   v     are both in the same tree and both in    V     or both in 
i j 1 

V    .    In the path    P ;  variables corresponding to increasing edges 
3 

can increase and variables corresponding to decreasing edges can 

decrease because they are in a tree with artificial.    Let the cycle 

be  (v^ e1, 
v2>---,v2k+1>  ^+1' V    where the end 0f   P   iS incident 

to    v.    and   e.    is the entering edge.    Then the edges other than    e. 
Ji Jb Ju 

are increasing or decreasing the same as they were before in the tree 

because en  and e„ ,  are both opposite of the end edge, and the 
1      2k+l ' 

edges alternate from e..  and e   until e. is met. In case (c), 

cB    will be designated as increasing and in case (d) as decreasing just 
Ju 

as in the proof of lemma h.    Therefore, the variable corresponding to 

every increasing: edge can increase, and the variable corresponding to 

every decreasing edge can decrease so the artificial strictly decreases. 

Lemma y? If a ,  0 ,  and b are integer, then all variables axe 
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integer except possibly for edges in a cycle which are integer divided 

by two, and the change Ö in step 5 is always integer. 

Proof:   Initially the lemma is true. Suppose it is true at the 

beginning of an iteration. Then the permissable change in a variable 

is an integer unless it is an edge of a cycle in which case the change 

is an integer divided by two. But the variables all change by 0 

9 
except for the edges of the cycle which change by - . The size of 

0  k 
0 is determined either by © » k  or — = ^- , so Ö is integer. 

All of the variables change by 6 except around a cycle, so they remain 

integer except around the cycle where they remain integer divided by 

two. 

Theorem 6 At most,    m   iterations of the algorithm can occur in 

sequence without any change in the artificials, and the algorithm 

terminates In a x'.nite number of steps.    If   a , a , and b    are integer 
m 

and       Z   | b.  J « M , then the algorithm terminates in at most    M m    steps. 
i^l 

Proof:        By lemma 6,  the only iterations that could result in no 

decrease in artificials are iterations for which in step 2,  cases  (c) 

or (d) occur with one vertex in   Vg.    Since    0=0,  the blocking variable 

could not be in the tree with artificial and is not the entering 

variable.    Hence, the tree with artificial will grow by at least the 

entering edge.    Therefore,    V_    decreases in size by at least one vertex 

in every iteration for which   0=0,    There are only   m   vertices 

so no more than   m    iterations in sequence could occur with no change 

in artificials. 

Finiteness follows in the same way as for the max-flow algorithm 

and indeed for linear programs in general cnce the objective has 
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been shown to decrease every finite number of iterations. The bound 

m M when a , a ,  and b are integer follows Just as before. 

This algorithm enjoys the same advantages as the max-flow algorithm 

and for similar reasons, Here^ cycles can form, but the essential 

fact is that for edge e.  in a tree with artificial every change in 

variables in step 3 causes x  to increase if e  is an even edge and 

to decrease if e,  is an odd edge. 

The primal-dual method explained for network flows in Chapter I, 

section 6, applies here in exactly the same way, except that the matrix 

A is different, and TT, - TT  is replaced by TT. T TT  for this problem. 

f.  Integer Prograjnmlng in an Undirected Graph 

The integer programming problem considered in this section is: 

(JO Ax + Us + Iy = b,0^ix^a,0^8^a,0^y,x and s 
n 
2 y = w(min) integer, 

1^1 

where A and U are the same as in the previous section, and b ^ 0 , 

a > 0 , and a > 0   all have integer conrponents. 

By lemma 7, the alternating path algorithm gives integer answers 

to (2) except around odd cycles in the basis. The odd cycles will 

now be handled so as to avoid non-integer solutions. 

The idea of the algorithm is the familiar cutting plane method 

used by Dantzig, Fulkerson, and Selraar Johnson on the traveling salesman 

problem [i ] and systematically developed by Gomory ( .:•], This algorithm 

is similar to one that Edmonds f /J ^ä8 used to solve a special case of 

(2) , the degree constrained subgraph problem, which is discussed in 

the next section. 

Inequalities of the form 
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kcK 

can be thought of as being adjoined to the system. The inequalities (k) 

axe  such that every integer solution to (f) satisfies them, but non- 

integer answers which might arise in the alternating path algorithm 

do not satisfy them. The following lemma tells exactly the type of 

inequalities which will be used. 

Lemma 15 Let \L be a subset of the vertices of G and E be a subset r 0 0 

of the edges of G such that every edge of E  is incident to at least 

one vertex of Vn .  Suppose that for all v e V  neither s  nor 

s' exists. Let K = (k | e e EJ* L ■ {k | e e E  and only one vertex 

of e,  is in V ) , M « (k ) e c E  and both vertices of e  are in 

V ), and J = {i I v e V ). Suppose  zb +Z a»2ß + l where 
0 10 ^J i k€L k 

ß is a positive integer. Then, every integer solution to the system (3) 

satisfies the Inequality Z *», <. ß • 
y      x 

Proof:   Let x, s, be a., -...ceger solution to Ax + Us + ly » b , 

O^x^a, O^s^a  ,0^y. Summing the rows 1 of Ax + Us + 

Iy » b for 1 e J gives 

hi 

(5) 2 L \+ L*^L*i 
keM    keL  i€J 

because there are no slacks in row 1 for 1 e J , and the only variables 

omitted are y  and x , k ^ K , and for them a X  ^ 0 and y. ^ 0. 

Adding  Z x  to both sides of (J) gives 
keL ^ 

k€M   kcL      i€J   keL 



From   3c   ^ Q,     and   K = LUM follows 

2 l\llhi* IA-23*1' or (7) 

(8) 

keK icJ kcL 

1\ ^ ß + l  • 
kcK 

3ut, the left-hand side of (0) is an integer so the right-hand side , 

ß + K ,  can he lowered to the next smaller integer, ß , and the proof is 

completed. 

Since for a given graph    G   there are only a finite number of 

inequalities  (k) of the type given in lerama 8,  the system with them 

adjoined is still finite.    That such inequalities are sufficient to 

give integer answers to (j) is proven constructively by the algorithm. 

Values of    x ,  s , artificials    y ,  and dual variables    p   will 

be kept track of throughout the algorithm and proven optimal at the 

conclusion.    However, the algorithm differs from the previous ones in 

that x, y,   s    may not form a basic solution.    The inequalities  {\) 

are not kept track of during the algorithm, but at the conclusion such 

inequalities are formed to prove optimality.        Only the phase I 

procedure will be done; that is, the problem of minimi zing    w =   ^ ^   • 

The algorithm is similar to the alternating path algorithm of the preceeding 

section. 

Vertex-clusters will be used in the algorithm.    A vertex-cluster 

is a set    U.    of vertices and other vertex-clusters together with a set 

E     of edges.     If the vertex-clusters in   U     are thought of as 

single vertices,  then the    U.   ,  E      form a graph with one cycle. 



aacb 8ftllba wre discussed in section l. The set v0 vUl be a set 

ot cert&tn of the wrticea ot G iDCluclecl in ~ vertex-cluster, u4 

~ wUl be a set ot eertaln edps incitlent to at least one vertex ot 

Yo • 

!lie ftl'tex-cl uaters are nestecl; that is, scae ot tbea are iDClu4ecl 

1D otber.. This order of inclusion is 111portut in the variable 

cllup step ot the &l&Oritllrl.. 'l'bere, tbe MX1Ml vertex cluat~s · 

an tint 1;braapt ot u aiagl.e vertices 1n order to deteraine certaln 

Wl'1able c:MDpa, ad then tbe variable ellaape an 4etel'II1De4 v1 tb1D 

-.ch wrtu-cl.uater invol ftd be82nn1DS v1 th the lN"pst &D4 vol'k:iDS 

dGifD UDt1l tbe wrtex-elust.ers consist oDly ot vertices of a •. 

tt tbe •rt•J vertex-clusters are thoucbt of u s~e ftrtices, 

t-.a tlley, toptber 111 th vertices aD4 edpa, tom trees roote4 at 

ftl'tiCH Ol' vertex-clusters v1 th aD art1t1ci&l. Let F UDOte the 

NRltiiiJI forest. 'l'he toMst P toea DOt 1DClu4e all¥ vertices, 

wrtez-cl.uten, or edps W1th1D tile ftl'tex•cluatera,&D4 tbe Mxt_, 

ftl'tex-cl.usters are eonsiclered t~ be vertieee ot r • As before, the 

nen eclpa in F are 4eaipate4 u 1Dereu1111 e4ps aa4 tbe oc14 

edpa 1D r u decreul!as qn. 

'lo becln, set y
1 

• b 
1 

it bi > 0 , u4 the forest r coaatats 

of vertices With b1 > 0 • T.bere T no wrtex-cluatera Uk , \ • Y0 

ia 4111pty, ad Ka is empty. · 

IDtem: A1. tel'Dat!.IW Path Alloritlll 

lt!p 1: !be dn&l var1&blea p
1 

are zero tor vertices DOt 1D tbe tozoeat 

., ot tnea Vit!l artitici&l.a at tbe root. ID the forest P , pi • +1 tor 

Tl 8D ftB vertex, u4 pi • •1 for Ti aD o44 vertex. The vert1CH 

l 
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v  in U  for all vertex-clusters have p = +1 , and the edge set 
1        iv X 

E« has an associated dual variable p  ■ -2 . 
0 m+1 

Let v1 » {i | pi - +1) , v2 - (i | pi - 0) , v5 = (i | p1 = -1) . 

Step 2(i);    Search for an  edge e. or vertex v  satisfying one of the 

following: 

(a) e^ = [v^ Vj] , x^ < ax , v1 eV1 , and Vj e V2 ; 

(b) ^  = [v^ V , x^ > 0 , vi eV3 , and ^ £ ^    ; 

(c) e£ = [v^ Vj] , x^ = ^ , v1 eV0 , and v^ ^    ; 

(d) v. e V , and s  or s" exists ; 

(e) Vj c V^ , vi ^ Vo ' and 6i < ai or si > 0 i 

(f) ^ ^ V   and s* > 0 or s^ < o^ ; 

(g) e^ = [v^ Vj] , ^ < a^, e^ E0 , vi c V^ and v^V^; 

(h) ^ • [V Vj] , x^ > 0 , v1 c V3 , and Vj € Vj ; 

(1) ei - [Vj, Vj] , x^ . a^ v1 E V0 , and v^^    ; 

(J) ^ = [v^ Vj] , 0 < x^ < ^ , v1 e V0 , and vj = V5 . 

In cases (a) - (c) , go to step 2(ii). In cases (d) - (j) , go to 

step J, 

Step 2(ii);   In case (a), if x « 0 or if v
± 4 Y

Q >  then chan6e 

v  from V  to V , adjoin e  and v  to F , and return to 
J       2     3 *> J 

step 2(i).  If x. > 0 and vi G V   then let U  E  be the largest 

vertex-cluster containing v . Let v. c U , v. G V , change v 

from V- to V , put e, in E^ , and put every edge e = [v , v] 

for v € U. A V  in the edge set E . Return to step 2(i). 

In case (b), change v, from V  to V , adjoin  e. euid 

v  to F , and return to step 2(i). 
J 
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In case (c), let U . E  be the largest vertex-cluster containing 

v . Ci.ange v  from Vr to V , put v  in U , e  in E , 

and e. in E , Return to step 2(i), 

Step 3:  In case (d), let U , E  be the largest vertex-cluster 

containing ". , let ^ be the root of the tree in F containing 

U , and let P = (v . e , v ,...,v  , e  , U ) be the path in F 

from v.  to U . 

In cases (e) and (f), let v, be the root of the tree containing 

v  and let P = (v , e , v ,...,v  , e  , v ) be the path in F 

from v,  to v . 

In cases (g) - (j) , suppose v  and v  are in different 

trees of F . Let v, be the root of the tree containing v , 

let v  be the root of the tree containing v. , let (v,, e., v.,..., 
r J        1  I7 2   ' 

v. , j e. i ^ v^ ^ be the path in F from v  to v , and let 

(v,, e., v.  .....v ., e ,, v ) be the path in F from v  to 
J  J  J+--    r-x' r-1' r J 

vr . Let P- (v^ e^ v2)..., v^ V Vj, e^ v .^...„v^. The 

vertices v, and v  have y., > 0 and y > 0 ,  In case (g) , 
1      r       1 r 

e. is increasing, and in cases (h) - (j), e. is decreasing. 

In all of the above cases, a positive integer change 9 can 

be made in the variables corresponding to F , just as in the alternating 

path algorithm. Here it must also be shown that an integer change ±0 

can be made alternately within a vertex-cluster includec". in the path P. 

Lemma 1,^ provides that proof. Go to step h. 

In cases (g) - (j) , suppose v  and v. are in the same tree of 

F . Let the path in F from v  to v  be (v , e , v 1>'««>
V
1_1> 

e^ e 
J" 

v ) and form the cycle C = (v^ e^ v1+1>*« • ^j.]^ 
ey vy *g)  • 
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Let the root of the tree containing v  and v  be v  and let P = 

■*■ J ^ 

(v , e , vp*'">vr_i* 
e .i> v ^ be the Path in F frora vi  t0 

the cycle. If none of v,,..,,1/  is a vertex-cluster, if all increasing 

edges e  in P have x< a - 2 , and if all decreasing edges e 

in P have x. ^ 2 ; then a variable change with 0 = 2 can be made 

Just as in the alternating path algorithm except that lemma 9 is 

needed to show that a positive integer change can be made through 

any vertex-clusters in the cycle. Repeat the variable change with © a 2 

until such a change would violate the feasibility conditlonc 0 ^. x ^ a , 

y > 0 .  If an increasing edge e  has x = a  or a decreasing edge 

e  has x = 0 , then go to step k. 

Otherwise, let v  he the vertex in P nearest to v  such that 
' q r 

either v  is a vertex-cluster, e , is a decreasing edge with q »  q-1 

x , = 1 , or e  is an increasing edge with x =0 - 1 . A new 
q-i   '   q q  q 

vertex-cluster U, , K     will be formed. Let v ,.,.,v  and all of 

the vertices or vertex-clusters of the cycle C be in U  and let 

e ..... e , and all of the edges of the cycle C be in E, . The q   ' r-1 -«        v Yi 

vertex v  is the base of U. . Let U,  be in F and remove all of 
q h       h 

the vertices of U.  and edges of E.  from F .  If e  was an increasing 

edge with x = a ,, then let V^ include v ...... v  and all of the ^       q   q-l* 0 q+l'   ' r 

vertices of the cycle C . Otherwise, let V  include all of the vertices 

of U, . Let E  include all of the edges in E  and all of the edges 
h       0 h 

with both vertices in U. OV^ . If em edge e. = [v., v.] of F has h  0        ^   k    i7 j 

vi e Uh *   vi ^ \*  and 0 ^ \ ^ a >  tiien ^J0111 \    ■tcboth E
h 

and E  and adjoin the vertex v  to both U  and V . Remove 
0 J h      0 

e  and v. from F . Enlarge En to include all edges es» [v , y] 
k      j 0 j 
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for    v    some vertex in    U,   H V    .     If an ecl</e    e    » [v..  v.]    has 

h        0 k i'    j 

v    € U^   ,  v   y U    , and    x    = a    ,  then adjoin    e      to both    E      and 
ih'j^h' kk' 0 k h 

E    , adjoin the vertex    v.    to only   U    t  emd remove    e    ,  v.    from 
u j n K   j 

F . 

Return to step 1. 

Step k:      For P = (v1, ei, 
v
2>«. •>

v
r,.1, 

c
r^  vr) ,  if \    has an 

artificial, then let v  be the vertex in P nearest to \,  such that 
> q 1 

either v  is a vertex-cluster, e .  is a blocking edge, e , 
q '  q-1 '  q-1 

is an entering edge, or v = v . Then drop all of P from e 

to the entering variable from F , and drop from F all of the vertices 

and edges whose path to the root Includes vertices already droppeo. from 

F . Delete from Vn all those vertices and change them from V  or 

V, to V . Drop all of the vertex-clusters and drop from E  any 

edge incident to a vertex dropped, 

.Return to step 1. 

Lemma Ik    Let U  be a vertex-cluster and v e U . Then, there is 
 <- 1 1 

an alternating path P from v to the base of U , and the end 

edge in P incident to v is a decreasing edge.  If v £  V      as 

well, then there is also an alternating path with an increasing end 

edge at v , A positive integer change in variables can be made along 

the alternating paths. 

Proof:   The proof is by induction because it is assumed that the 

lemma is true for every vertex-cluster used in foraii. ■; the vertex-cluster 

U, . With that inductive hypothesis, we can assume all of the vertex- 

clusters used to form U  are single vertices. 

Initially, the vertex-cluster U,  is formed from a path 



For any vertex v. £ C ,    l^r + l,P« (v , e , v.  ,...,v 

5^ 

P - (V e1, V
,,'Vr-l' er-l' VJ    and a Cy0le C " (V V Vr+l,"t,\' 

e , v ) where the path P may consist only of the vertex v . The 
q,  r ;r 

cycle C is an odd cycle and has the same alternating character as in 

the alternating path algorithm. 

V V Vl' Vr-l""'Vei' Vl) ^ P2 "  (V ei-l' Vi-1"-" 

v ,, e , v , e ,, v ,... .,v . e . v, ) etre alternating paths from 
r+1  r  r' r-1  r-l'  '211 

v  to v , and one of e., e   is increasing while the other is 

decreasing. The paths P  and P  are simple paths so obviously 

an integer change can be made. 

For any vertex vi € P , i ;> 2 , ^ = (v±,  e^, \ml,.**,v2, ts.^  vj 

and P- » (v., e , v  ,... v  , e ,, v , e , v ,,...,v , e , v , e  , 
2  v i  i  i+1   ' r-1' r-1' r' r' r+1'  ' q' q' r' r-1' 

v ■,••*• tv„, e,, v, ) are alternating paths from v. to v, , and one 
r-1'  ' 2' 1' 1 i     1 ' 

of e., e   is increasing while the other is decreasing. The path P 

is simple,but Pp is not simple. But, the increasing edges e  of 

P , k ^ 2 , have x. ^ O. - 2f  and the decreasing edges e  of P have 

x. J> 2 . Hence, an integer change can still be made along P  and P . 

For v-, the path P « (v ) has the effect of having the end 

edge an increasing edge because at v  there is either an artificial 

or a decreasing edge incident to v. on the path leading from v 

to the root. If v € V , then all of the increasing edges e  of 

P have x.  a - 2 , and decreasing edges e  of P have X ^ 2. 

Hence. P« ■ (v, . e,, v .,.,,v  , e ,, v , e . v ,,. ...v , e , v , e 
,  2  N 1* 1' 2    r-1' r-1' r' r' r+l'  ' q' q' r' r-1' 

,...,v , e , v ) is an alternating path from v  to v  with e 

decreasing and permitting an integer change in variables. The proof is 

complete. 

Vr-1 
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The change of variables in step 3 is now complete. Finlteneas will 

now be proven, 
m 

Theorem t If   M «   ^ b    . then the algorithm terminates In at most 
1^1 

2 m M iterations. 

Proof:   Every change of variable In step 5 results in an Integer 
m 

decrease In 2 y. . Hence, the proof will be completed If it is 
1^1 

shown that there can be, at most, 2 m   iterations in sequence with no 

change in flow. 

If the algorithm goes to step 2(ll),  then   V2   decreases by one 

vertex, and   V0    either remains the same or Increases.    If the algorithm 

goes to step 5 and no change in variables results, then a new vertex- 

cluster is formed^ and   V0    Increases by at least one vertex while 

Vp   remains the same.    There are only   m   vertices In all,  so only   2 m 

such Iterations could occur in sequence. 

Theorem 6 At the termination of the algorithm, let    J , K , L , and 

M   be as in lemma IJ and let   q   be the number of vertex-clusters In 

F ; that is, the number of maximal vertex-clusters.    Then, 

i€J k€L 

where    ß   is a positive Integer, every Integer solution to (5) satisfies 

2 x.   ^ ß   , and the present solution   x ,  s , y   is optimal to the 
keK K 

linear program: 

Cl£> Ax + Us + Iy=b    ,    O^x^a    ,0^s^a    ,0^y, 

k€K   y^i a^ai^ - 
1-i 
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Proof:   Equation (9) and the fact that every Integer solution to (3) 

satisfies   2 x <£ ß will be shown together. Suppose that the 
k€K K 

maximal vertex-clusters are (U., E )    (U , E ) . Let V* ■ V 0 U. 
llqq, 0        0       x, 

and   E^ - E0 n E^ .      Let   K^ - (k | ek e E^)    ,    l/ . {k | ek € E^    and 

only one vertex If   ek    Is in   V^)    ,    W a    ^\\£o   and both 

vertices of   ek    are In   V^)    ,    and    J"2 » (1 | v1 c V^)    . 

For each   & « 1,...,q , 

(u)      2 L ^a Lbi+1 A ■' 
keir    ic/   keL^ 

"because at the base of each vertex cluster either there Is an edge e, , 

k e L , with x » a - 1 , or there Is an edge e , k ^ IT , with 

v = 1 . All other edges e   k ^ IT , Incident to vertices of V^ 

have x. = 0 , There are no slacks on v € V  because of step 2(l) 

o 
case (d). Hence,   2 -b, + 2 n     Is an odd number ; say, 2ß + l , 

l€ J^ 1  keL^ K 

Then, lemma 15 asserts that every Integer solution to (J) satisfies 

k€ir 

fhe vertex sets    ^f»*^   a1** pair-wise disjoint, and the edge 

sets    EJ:,,.,,EQ    eure pair-wise disjoint.    Summing the equations 

Z «b.  + 2 -ex   - 2ß   +1      for   i^l,,..,q   gives    Z b    + Z a   - 2ß + q, 
le/ x   kcr K leJ 1   k€L K 

where    ß a Z ß 

Thus, equation (9) Is proven, and summing the Inequalities (lÄ) 

for  i » 1,...,q , gives   Z x. ^ ß for every Integer solution to (5). 
k€K K 
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To prove optimality, the complimentary slackness conditions 

(page 15^,8^) wiH b6 use<i since the solution Is no longer basic. 

The dual variables are p * +1 for v € v  , p - 0 for 

v, € V  . p, ■ -1 for v. e V , and p , - -2 , The folloving 
i   2 ' ' 1 15'     m+1 

conditions nogether with complimentary slackneas prove optimallty: 

(13)    if ek e Eo , ek - [v^ Vj] , then ^ + ^ +  Pm+1 - 0 ; 

(Ik) if ek ^ 
Eo ' ek - ^i' 

VJ^ ^ " ak' 
then Pi + Pj ^ 0 ' 

(15) if ek ^ 
E
0 > ek =• i\> v^ * 0<\<<\'  then pi + pj = 0 ; 

(16) if ek ^ 
Eo ' ek ' fvi' VJ^ ' ^k ^ 0 ' then pi + PJ ^ 0 J 

(17) if sj" = a* or s^ « 0 , then Pi^0 ; 

(10) if   0 < sj" < aj"   or   0 < s^ < a^ ,  then   pi = 0 . 

(19) if    s^ = 0   or   3l ^ ^l r then   Pi 1 0 • 

(fiO) 2 je   = ß . 
k€K K 

Condition (13) follows from the observation that if e
k ^ 

E
0 * then 

vi€ vi ^ vj€ vi • 
If (li*) were violated, then either v € V  and v. e V , or 

v. € V and v € V . But the algorithm has terminated, and step 2(i) 
i   3     J   3 

case (b) excludes ^ € V  and v € Vg , and case (h) excludes 

v. e V  and v e V . 

Similarly for (15), step 2(l) case (a) excludes v € V  and 

v e V , case (b) excludes v € V  and v c V , case (g) excludes 

v, € V, and v. e V, , and case (h) excludes v. € V and v^ € V, . 
il      j   1 ' 13    J5 

Hence, either p± £ \    and P. € V , or pi e V2 and p^ € ^ . In 

either case, p. + p. =0, 

For (16), step 2(i) case (a) excludes v1 € ^ and v e Vg , 

and case (g) excludes v1 € ^ and v € V1. Hence, Pi + Pj 1 0 • 



56 

In (17), step 2(i) case (f) assures that v ^ V so p. > 0 , 

In (lö), step 2(l) cases (e), and (f) assure that v. € V and 

pi - 0. 

In (l9), step 2(i) cases (d) and (e) assure that v, 4  V  and 

Equation (ll) proves that ^ j\ * &    >  an(i Sl™nlng for I  = l,,.,,q 

gives (20). 

Corollary 1   If G has no odd cycles or If every odd cycle in G has 

at least one vertex with a slack permitted, then no vertex clusters 

need be formed and no inequalities need be adjoined to the linear 

program (5) in order to find an integer answer. 

Proof:   The proof follows from the fact that V has no slacks at any 

of its vertices. 

Corollary 2  An integer solution x , s , y to (5) is optimal if, 

and only if, there does not exist an alternating path P in G 

with an artificial y. > 0 at one end and an increasing edge at that 

end of P , and the other end of P having a slack or artificial 

which can change to compensate for the change in the other e^.d edge 

of P , The path P need not be simple, 

Kfc The Degree-Constrained Subgraph Problem 

The degree p(v) of a vertex v of a graph G is the number 

of edges incident to v , Let H be a subgraph of G and let the 

degree of a vertex v in H be denoted p'Cv), The integer program 

in an undirected graph of the preceeding section can be interpreted as 

the following problem: if an ed^e e.  can be repeated a  times in 

determining the degrees p'Cv) of vertices v in H , then rind, if 
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possible, a subgraph H of G such that b < p'Cv ) < b. + a" if s' 
i     i   i  i     i 

exists, b1 - O^p'^) ^^  if s^ exists, and b = p'Cv ) if 

no slack is permitted at v. . Here, if a' « + » , then there is no 

upper bound on p'Cv.) , and if  o » + » , then there is no lower bound 

on p' (v.) , although zero is always an implied lower bound on v . 

This problem has been studied by Berge [l], Norman and Babin [y ], 

and Edmonds [It] and [^]. 

Corollary 3   (Berge, Norman, Rabin) Among all subgraphs H of G 

having p' (v.) ^ b , a given subgraph H  has the maximum number 

of edges if, and only if, there is no alternating path between 

two vertices v, and v  of H  such that p'Cv ) < b   p'CO < b , 

and the alternating path has increasing edges at ea?h end. 

Proof:   This corollary follows from corollary 2 applied to the 

following special case of (j): 

(21)    Ax + Iy = b, O^x^O^, O^y, x integer 

m 

2jyl = w(min) . 

ial 
m 

Subtracting the rows of   Ax + ly = b    from the objective      Z y.    and 

dividing by -2 converts (21) into 

(2E) Ax+Iy = b,0   ^.x^o^,    O^y,    x integer. 

n 

I 
kml 

x    a z(max) . 
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